225 research outputs found

    Oral health in two heterozygote female twins with congenital lactic acidosis

    Get PDF
    Introduction: Congenital lactic acidosis (CLA) is a rare disease caused by mutations in Mithocondrial DNA (mtDNA), which affects the ability of cells to use energy that causes accumulation of lactic acid in the body. No oral manifestations have been documented in these patients. Methods: We report the oral health status of two young adolescent heterozygote female twins, one of them being diagnosed at 8 weeks of life by muscle biopsy with a severe neonatal form of CLA. In order to avoid biopsy-related complications, the second twin did not undergo a diagnostic procedure and both girls were treated for CLA. They underwent clinical oral health examination at the age of 12, for caries evaluation (diagnostic threshold D1 - early enamel demineralization) by ICDAS II clinical assessment, photographic documentation and fluorescence intra-oral camera. Results: Among the two twins, the CLA-diagnosed one presented with severe enamel carious hypomineralizations on upper and lower vestibular smooth surfaces. Moreover, deep occlusal enamel carious lesions were detected by intra-oral fluorescence camera. The second twin had no obvious decay lesions, neither on pit and fissures nor on vestibular smooth surfaces. Conclusions: Congenital lactic acidosis might be associated with hypomineralized defects and caries susceptibility in young adolescents. Preventive measures and personalized caries risk assessment should be encouraged and implemented in these patients following current caries management systems protocols, as ICCMS (International Caries Classification and Management System)

    Clinical Significance of MicroRNA Expression Profiles and Polymorphisms in Lung Cancer Development and Management

    Get PDF
    Lung cancers account for a huge percentage of death in industrialized countries, and hence there is an increasing call for the development of novel treatments. These malignancies are caused by a combination of environmental factors, principally cigarette smoking and genetic alterations. MicroRNAs (miRNAs) are a recently discovered class of regulatory noncoding small RNAs with a significance in numerous biological processes. Strong evidence links miRNA impaired expression profiles and pathways to the etiology of several diseases, including neoplasia. This paper focuses on the emerging role of miRNA function in lung cancer development with particular highlighting on the use of miRNA profiles and polymorphisms for the molecular and biological characterization of tumor pulmonary growth and progression. Furthermore, we underline the potential utility of lung cancer-associated miRNAs as clinical biomarkers with a diagnostic, prognostic, and therapeutic significance and give emphasis to the promising novel miRNA-based curative strategies

    Molecular analysis of PKU-associated PAH mutations: a fast and simple genotyping test

    Get PDF
    Abstract: Neonatal screening for phenylketonuria (PKU, OMIM: 261600) was introduced at the end of the 1960s. We developed a rapid and simple molecular test for the most frequent phenylalanine hydroxylase (PAH, Gene ID: 5053) mutations. Using this method to detect the 18 most frequent mutations, it is possible to achieve a 75% detection rate in Italian population. The variants selected also reach a high detection rate in other populations, for example, 70% in southern Germany, 68% in western Germany, 76% in Denmark, 68% in Sweden, 63% in Poland, and 60% in Bulgaria. We successfully applied this confirmation test in neonatal screening for hyperphenylalaninemias using dried blood spots and obtained the genotype in approximately 48 h. The method was found to be suitable as second tier test in neonatal screening for hyperphenylalaninemias in neonates with a positive screening test. This test can also be useful for carrier screening because it can bypass the entire coding sequence and intron–exon boundaries sequencing, thereby overcoming the questions that this approach implies, such as new variant interpretations

    Prenatal exome sequencing: background, current practice and future perspectives - A systematic review

    Get PDF
    The introduction of Next Generation Sequencing (NGS) technologies has exerted a significant impact on prenatal diagnosis. Prenatal Exome Sequencing (pES) is performed with increasing frequency in fetuses with structural anomalies and negative chromosomal analysis. The actual diagnostic value varies extensively, and the role of incidental/secondary or inconclusive findings and negative results has not been fully ascertained. We performed a systematic literature review to evaluate the diagnostic yield, as well as inconclusive and negative-result rates of pES. Papers were divided in two groups. The former includes fetuses presenting structural anomalies, regardless the involved organ; the latter focuses on specific class anomalies. Available findings on non-informative or negative results were gathered as well. In the first group, the weighted average diagnostic yield resulted 19%, and inconclusive finding rate 12%. In the second group, the percentages were extremely variable due to differences in sample sizes and inclusion criteria, which constitute major determinants of pES efficiency. Diagnostic pES availability and its application have a pivotal role in prenatal diagnosis, though more homogeneity in access criteria and a consensus on clinical management of controversial information management is envisageable to reach widespread use in the near future

    Synergistic Post-Transcriptional Regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 Specific Binding

    Get PDF
    microRNAs (miRNAs) are a class of regulatory small non-coding molecules that control gene expression at post-transcriptional level. Deregulation of miRNA functions affects a variety of biological processes also involved in the etiology of several human mendelian and complex diseases. Recently, aberrant miRNA expression has been observed in Cystic Fibrosis (CF), an autosomal-recessive genetic disorder caused by mutations in the CFTR gene, in which a genotype-phenotype correlation is not always found. In order to determine miRNA role in CFTR post-transcriptional regulation, we searched for miR-responsive elements in the CFTR 3′-UTR. In silico analysis, performed using different computational on-line programs, identified some putative miRNAs. Both miR-101 and miR-494 synthetic mimics significantly inhibited the expression of a reporter construct containing the 3′-UTR of CFTR in luciferase assays. Interestingly, miR-101/miR-494 combination was able to markedly suppress CFTR activity by approximately 80% (p<0.001). This is one of the first in vitro studies implicating microRNAs as negative regulators of the CFTR gene expression. miRNA aberrant expression and function might explain the wide phenotypic variability observed among CF patients

    DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation

    Get PDF
    Aberrant DNA methylation has been frequently observed in many human cancers, including rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. To date, the expression and function of the de novo DNA methyltransferase (DNMT) 3B in RMS have not yet been investigated. Our study show for the first time a significant up-regulation of DNMT3B levels in 14 RMS tumour samples and 4 RMS cell lines in comparison to normal skeletal muscle. Transfection of RD and TE671 cells, two in vitro models of embryonal RMS (ERMS), with a synthetic DNMT3B siRNA decreased cell proliferation by arresting cell cycle at G1 phase, as demonstrated by the reduced expression of Cyclin B1, Cyclin D1 and Cyclin E2, and by the concomitant up-regulation of the checkpoint regulators p21 and p27. DNMT3B depletion also impaired RB phosphorylation status and decreased migratory capacity and clonogenic potential. Interestingly, DNMT3B knock-down was able to commit ERMS cells towards myogenic terminal differentiation, as confirmed by the acquisition of a myogenic-like phenotype and by the increased expression of the myogenic markers MYOD1, Myogenin and MyHC. Finally, inhibition of MEK/ERK signalling by U0126 resulted in a reduction of DNMT3B protein, giving evidence that DNMT3B is a down-stream molecule of this oncogenic pathway.Taken together, our data indicate that altered expression of DNMT3B plays a key role in ERMS development since its silencing is able to reverse cell cancer phenotype by rescuing myogenic program. Epigenetic therapy, by targeting the DNA methylation machinery, may represent a novel therapeutic strategy against RMS

    Crizotinib-induced antitumour activity in human alveolar rhabdomyosarcoma cells is not solely dependent on ALK and MET inhibition

    Get PDF
    BACKGROUND: Rhabdomyosarcoma (RMS) is the most commonly diagnosed malignant soft tissue tumour in children and adolescents. Aberrant expression of Anaplastic Lymphoma Kinase (ALK) and MET gene has been implicated in the malignant progression of RMS, especially in the alveolar subtype. This observation suggests that crizotinib (PF-02341066), a kinase inhibitor against ALK and MET, may have a therapeutic role in RMS, although its antitumour activity in this malignancy has not yet been studied. METHODS: RH4 and RH30 alveolar RMS (ARMS) cell lines were treated with crizotinib and then assessed by using proliferation, viability, migration and colony formation assays. Multiple approaches, including flow cytometry, immunofluorescence, western blotting and siRNA-based knock-down, were used in order to investigate possible molecular mechanisms linked to crizotinib activity. RESULTS: In vitro treatment with crizotinib inhibited ALK and MET proteins, as well as Insulin-like Growth Factor 1 Receptor (IGF1R), with a concomitant robust dephosphorylation of AKT and ERK, two downstream kinases involved in RMS cell proliferation and survival. Exposure to crizotinib impaired cell growth, and accumulation at G2/M phase was attributed to an altered expression and activation of checkpoint regulators, such as Cyclin B1 and Cdc2. Crizotinib was able to induce apoptosis and autophagy in a dose-dependent manner, as shown by caspase-3 activation/PARP proteolytic cleavage down-regulation and by LC3 activation/p62 down-regulation, respectively. The accumulation of reactive oxygen species (ROS) seemed to contribute to crizotinib effects in RH4 and RH30 cells. Moreover, crizotinib-treated RH4 and RH30 cells exhibited a decreased migratory/invasive capacity and clonogenic potential. CONCLUSIONS: These results provide a further insight into the molecular mechanisms affected by crizotinib in ARMS cells inferring that it could be a useful therapeutic tool in ARMS cancer treatment

    Palladium- and copper-catalyzed highly selective mono-coupling between 2,6-diiodoanisoles and terminal alkynes in the production of alkynylated anisoles as potential precursors of benzo[b]furans

    Get PDF
    The coupling reaction between 2,6-diiodoanisoles and terminal alkynes using Pd(PPh3)2Cl2 and CuI as catalysts and diisopropylamine as base in toluene at room temperature for 12 h produced selectively alkynylated 2-iodoanisoles, in good to excellent yields (52-95%), which are useful building blocks with potential application in the synthesis of functionalized benzo[b]furans.A reação de acoplamento entre 2,6-diiodoanisóis e alcinos terminais usando Pd(PPh3)2Cl2 e CuI como catalisadores e diisopropilamina como base em tolueno a temperatura ambiente por 12 h produziu seletivamente 2-iodoanisóis aquinilados, em rendimentos de bons a excelentes (52-95%), os quais são blocos de construção úteis com potencial aplicação na síntese de benzo[b]furanos funcionalizados.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundacao de Apoio ao Desenvolvimento do EnsinoCiencia e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT)Universidade Federal de São Paulo (UNIFESP) Departamento de Ciências Exatas e da TerraUniversidade Federal da Grande Dourados Faculdade de Ciências Exatas e TecnologiaUNIFESP, Depto. de Ciências Exatas e da TerraSciEL

    Role of fetal MRI in the evaluation of isolated and non-isolated corpus callosum dysgenesis: results of a cross-sectional study

    Get PDF
    PURPOSE: The aims of this study were to characterize isolated and non-isolated forms of corpus callosum dysgenesis (CCD) at fetal magnetic resonance imaging (MRI) and to identify early predictors of associated anomalies. METHODS: We retrospectively analyzed 104 fetuses with CCD undergoing MRI between 2006 and 2016. Corpus callosum, cavum septi pellucidi, biometry, presence of ventriculomegaly, gyration anomalies, cranio-encephalic abnormalities and body malformations were evaluated. Results of genetic tests were also recorded. RESULTS: At MRI, isolated CCD was 26.9%, the rest being associated to other abnormalities. In the isolated group, median gestational age at MRI was lower in complete agenesis than in hypoplasia (22 vs 28 weeks). In the group with additional findings, cortical dysplasia was the most frequently associated feature (P = 0.008), with a more frequent occurrence in complete agenesis (70%) versus other forms; mesial frontal lobes were more often involved than other cortical regions (P = 0.006), with polymicrogyria as the most frequent cortical malformation (40%). Multivariate analysis confirmed the association between complete agenesis and cortical dysplasia (odds ratio = 7.29, 95% confidence interval 1.51-35.21). CONCLUSIONS: CCD is often complicated by other intra-cranial and extra-cranial findings (cortical dysplasias as the most prevalent) that significantly affect the postnatal prognosis. The present study showed CCD with associated anomalies as more frequent than isolated (73.1%). In isolated forms, severe ventriculomegaly was a reliable herald of future appearance of associated features
    corecore